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Nonsteady-state gasdynamic processes are considered in a plasma column thot channel), formed
behind the front of a shock wave moving toward a laser beam. A quasi-one-dimensional approxi-
mation is used — the parameters in the channel are assumed tc be compensated with respect to
cross section, but depend on the time and distance along the axis, Motion in the cold dense cas~
ing surrounding the channel is assumed to be one-dimensional and cylindrically symmetrical.
The solutions of the corresponding systems of equations in partial derivatives permit the param-
eters to be determined approximately both in the case when the mean free path of the radiation is
small in comparison with the radius of the beam (luminous detonation) and also in the case when
the mean free path is comparable with the radius. Examples are given of the corresponding nu-
merical calculations, Itis shownthat in the latter case, a cycle of incomplete absorption can be
achieved when behind the shock wave front, moving with constant velocity up to the Jouguet plane,
only a part of the radiation energy incident on the front is released.

§ 1. The concept of luminous detonation — the propagation of a shock wave counter to a laser beam, be~
hind the front of which the radiation energy which defines the parameters of the wave is released in a narrow
zone — was used for the first time in [1] in order to interpret the phenomenon of the propagation of a plasma
front from a laser burst. In order to calculate the parameters of the detonation wave, ordinary algebraic
relations are used: the hydrodynamic laws of conservation on the assumption of total absorption in a narrow
zone of the radiation incident on the front and the fulfilling of the Jouguet condition [1-4], However, these as-
sumptions are not always fulfilled. Moreover, the parameters of the plasma behind the detonation wave front,
moving with variable velocity, are interesting. In these instances, it is natural to have recourse to the solu~
tion of the corresponding gasdynamic problem, taking account of the finiteness of the energy release zone.
When the diameter of the beam is larger in comparison with the distance traveled by the shock wave, the pat-
tern is close to plane.

Sometimes it is possible to use also self-similar solutions (see, for example, [5]), and in the general
case recourse can be had to any numerical method (for example, the one used in [6]) for calculating the occur~
rence and propagation of detonation waves in a layer of the vapors formed by the action of radiation on con-
densed substances. However, since the diameter of the beam usually is extremely small, during the action of
the radiation pulse the shock wave travels distances which are greater than the diameter, and the spreading-
out of the plasma column, formed behind the shock front "in the direction perpendicular to the beam, becomes
considerable. Expansion and cooling of the plasma can lead to an increase of its transparency, a reduction of
the energy release behind the shock front, and to the impossibility of detonation when the diameter of the beam

_is less than a certain critical value [7].

The solution of the complete two-dimensional non-steady-state gasdynamic problem with the release of
energy is quite complex and time consuming, and numerous alternatives are possible, which differ in
the density of the radiation flux, the duration of action, beam dimensions, the shape of the pulse with time, and
the density and composition of the gas, according to which the shock waves are propagated. Therefore, it is
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advantageous to develop an approximate method for calculating the parameters, taking into account the effect
of lateral expansion.

The phenomenon being considered is characterized, in the first place, by high sonic velocities in the
hot "channel” in which the gas has been heated up not only by the shock front moving counter to the radiation,
but also as a result of the absorption of radiation behind the front; secondly, by relatively low velocities of
sound in the cold "envelope,” where the gas is compressed behind the "lateral® shock front, which has, in
addition, a lower amplitude ‘than the "head" wave, In order to describe the motion of the gas and the change
of parameters in a long narrow channel, we shall use a quasi-one-dimensional approximation — the param-
eters in each section of the "channel” are assumed to be compensated but their change along the axis of the
channel and with time is postulated.

The motion of the gas in the envelope will be assumed to be one-dimensional and traveling in the direc-
tion perpendicular to the axis of the channel. In order to determine the parameters in the envelope, it is
necessary to solvethe cylindrically symmetrical problem for each section (realistic, of course, for a number
of chosen sections). The parameters in each section are related with one another by the parameters in the
channel, where the energy of the particles is changing both on account of its external supply and its redistribu-
tion during motion along the axis, and also due to expansion of the channel. The quasi~one-dimensional ap-
proximation is applicable also in another limiting case — when the pattern is close to plane and the lateral ex-
pansion is negligibly small,

The system of equations for describing the gasdynamic processes in the channel, taking account of the
change of its cross~-sectional area, has the form

ou/dt -+ Sop/om = 0; 0¢/dt — duldm = 0; (1.1
OE/dt + d(pusS)/om + dFIom = f — 2pqugry; (1.2)
35/0t — (u/)aS/om = 2w,ry; (1.3)
E=c¢tu?/2, S=ri ¢ ‘= p§, (1.4)

where p is the pressure; p is the density; e is the specific energy of unit mass; u is the velocity; E is the total
energy of the particles; 7S is the cross-sectional area of the channel; ry is the radius of the channel; ¢ is a
parameter, which is the analog of the specific volume; w, is the velocity of motion of the boundaries of the
channel (in the direction perpendicular to the axis); t is the time; and m is the Lagrangian mass coordinate,
The system of equations of motion and continuity (1.1}, energy (1.2), and the equation for determining the area
of the channel (1.3) must be added to the equation of state

p= -(v—'i)e.o, v = yle, p), (1.5)

where v is the effective integrated adiabatic index. The distance x along the axis of the channel can be deter-
mined, for example, from the relation

pSdx/dm = 1.
Equation (1.3) is obtained by converting to m and t from the relation
ar(l/ dt;x:const = Wy.

The last term of Eq. (1.2) describes the work completed during expansion of the channel, and the penulti~
mate term describes the intensity of the heat release (f > 0), for example, Joule heat, during the passage of an
electric current, or the removal of heat (f<0) through the wall of the channel due to electron thermal conduc-
tivity or by means of spatial luminescence. Below, we shall suppose that these losses of energy are negligibly
small, and therefore we shall not specify the connection between f and the other gas parameters, assuming
simply that £=0,

The quantity F is the total energy flux along the channel. The corresponding energy release 9F/om is
assumed to be identical for all particles of given cross section.

~ 1In this paper, we shall assume that the transfer of energy along the channel is accomplished only because
of the absorption of monochromatic laser radiation. In this case, we shall use the transport equation

oF/om = — (%/S)F or OF/0x = —nF,

averaged over the cross section, where 7 is the linear and wthe mass absorption coefficient, and w=ufe, p).
The diffusion of the flow of radiation energy over the whole cross section of the channel contributes a finite
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error in the description of the picture of the process. However, if the energy release takes place only in a
relatively narrow zone, within the limits of which the cross sectional area $ could not be changed by compari-
son with its initial value, equal to the cross section of the beam, as occurs, for example, at the detonation wave
front, then this procedure does not contribute a significant error,

The system of equations for describing the motion in the envelope between the shock wave and the channel
has the form ‘

ow/dt 4 rap/ou = 0; dv/dt—olwr)/on = U; (1.6)
[3(e + w¥2)1/0t + Hpwr)/én = ¥, (1.7)

where v is the specific volume of the gas (v=1/p); w is the velocity of motion in the direction perpendicular
to the axis; and n is the Lagrangian mass coordinate, connected with the radius r by the relation

pror/on = 1. (1.8)

The quantity f in Eq. (1.7), determines the energy release in the envelope, for example, due to absorption of
radiation of the continuum, emitted by the hot channel, In the specific examples considered below, we shall
assume that £=0, We shall call the system of equations (1,1)-(1.5), system I, and system of equations (1.5),
(1.6)-(1.8), system II,

System II will be solved for each of the sections considered x =x; with the boundary condition defining
equality of pressure in the cold envelope and in the hot channel at their boundary of separation:

polt) = plt, n = 0) = p(t, my(1)).

where m;({t) corresponds to a given value of X;. At the same time, the densities and temperatures in the chan~
nel and envelope are different, We note that particles in the channel are transported relative to a given sec-
tion and the presence of this contact discontinuity would make it difficult to carry out two-dimensional calcu-
lations of this problem by a direct scheme. Obviously, in this case, it is desirable to separate the boundaries
of separation of the channel and the envelope.

The values of the velocity at the boundary wy=w(, n=0) are used in the solution of system I jointly with
system II. In order to reduce the number of sections x; for which the calculation of system II will be carried
out, it is necessary to choose a suitable method of interpolation of the parameters between these sections. We
introduce

oc(x, t) = wo/wsv ﬁ(xa Z) = Po/Pm

where wg and pg are the velocity and pressure at the shock front, related to each other by the Hugoniot adia-
bat

ps = palw,). (1.9

The quantities @ and 3 are ordinary weakly varying functions of their arguments. For a strong shock wave,
moving according to a power law from a piston, expanding according to this same law, the problem concern~
ing the motion of the gas between them is self-similar and the quantities o and 8 are constant in time. This
occurs also for the limiting case of a cylindrical powerful explosion with constant energy. Therefore, rela-
tion (1.9) can be treated as the relation between p, and w,, and it can be used as the boundary condition for
solving system I:

Po = Bpalwy/a).

In this case, the values of @ (x, t) and B(x, t) in a certain time interval are assumed to be equal to their value
in the last instant of the preceding interval, i.e., their extrapolation is used. Later [when system II is solved
with the law of pressure variation p,(t) obtained in the solution of system I}, a recalculation can be carried out
and the refined functions « (x;, t) and B(x{, t) can be determined at a given time interval. For the lengths be-
tween the sections in which system II was solved, the functions @ and 8 are determined by interpolation with
respect to x. )

For calculations which do not require special accuracy, in those cases when the "lateral” shock wave is
strong and the compression behind its front is large, the approximation of an infinitely thin envelope can be
used when we have a simple relation between o, 8, and the law of motion of the envelope [3, 9]

xa=1, =1+ dnwidlnn,

where ng is the mass entrained by the lateral shock front.
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Numerical calculations of the flow in the channel have been carried out by the difference scheme de-
scribedin [10]using an artificial viscosity and based on the method of integral relations. Calculations of the
motion in a lateral direction have been carried out by the scheme with a formulated shock front, similar to
[11], or on the assumption of an infinitely thin envelope. We note that the use of the latter assumption even
for a strong wave may prove to be extremely rough. If the hot channel is open from one or both sides, and
flow into a vacuum or into a low-density medium takes place from it, then the pressure in the channel falls
sharply, as a result of which the return motion of the walls of the channel toward its axis commences, while
the shock front will be moving from the center, i.e., the quantity 8 can be reduced sharply and may even
change sign. In this situation it becomes necessary to carry out the calculation of the motion in the envelope.

The cases of a closed channel, in which no reverse motion occurs, will be considered in this paper,
The calculations of the problem of cylindrically symmetrical motion of a gas, with the laws of fall of pressure
in the channel with time, and which are typical for the problems considered below, have shown that over a
quite large time interval @ = 1 and f=0.7. These constant values for ¢ and were assumed in the examples
of calculations described. '

When using this method, it is necessary also that the shape of the channel and of the shock wave do not
differ too strongly from a circular cylinder, in order that only the redistribution of energy between sections
due to motion in the channel would be taken into account, and not redistribution due to motion in the cold en-
velope in the direction along the axis of the channel,

We note that an approach close to that described was used in an investigation of the dynamics of con-
striction of a plasma pinch by an electric discharge in vacuo in [12], where there was no cold gas envelope,
and the pressure of the magnetic field was determined by the magnitude of the electric current flowing and the
radius of the channel. The difference between our formulation and that of [12] consists in thatthe total energy
equation for particles in the channel is considered, and it is not postulated that the flow is adiabatic or iso-
thermal, Thus, the formation and propagation of shock waves in the channel is permitted,

In [13] an even more simplified approach was used for describing the parameters behind the front of a
luminous detonation (the motion was assumed to be cylindrically symmetrical). It is obvious that with a
strong change of the radiation flux density with time and with a corresponding change of velocity of the lu-
minous detonation front andthegas velocity behind it, a significant motion of the plasma in the channel along
its axis originates, Moreover, it will be shown below that even with a constant flux density, in consequence
of the strong pressure differential between regions close to the front of the detonation wave, where the pres-
sure is maintained continuously at a high level, and remote from it where the pressure is reduced strongly be-
cause of the lateral expansion of the channel, motion along the channel axis originates which is directed from
the luminous detonation front. Finally, the quasi-one-dimensional procedure enables the parameters to be
calculated also by taking account of the finiteness of the width of the energy release zone, however, with a not
too large magnitude of the radiation mean free path at the shock front,

Let us consider an example of a calculation of the problem of a gas behind the front of a luminous de-
tonation wave in air at normal density, p,=py,=1.29-10-3 g/cm?, with a flux density of the incident radiation
4z =250 MW/cm? and a radius R=3 mm, The thermodynamic properties of the heated air were described in
the detailed tables of [14] and the optical properties, in the tables of [15]. We note that in this example the
magnitudes of the radiation mean free paths behind the wave front are found to be very small in comparison
with the radius of the channel, and therefore in the calculations we used a method of artificial limitation of
the magnitude of the absorption coefficient in order to spread out the energy release zone at several calculated
points [6].

Figure 1 shows the shape of the channel. The numbers above the curves correspond to time instants
(usec) from the start of the effect of the laser emission on the initially formed plasma layer of small thickness,
The detonation initiation process and the formation process of this layer will not be considered here. The
initial temperature and density of the plasma in this thin layer were chosen approximately with the corre-
sponding values inthe vapor of a solid substance af the instant of initiation of the "burst™ in them [6].

At the instant t=1.14 usec, the radiation ceases to act, After this time, energy E =285 J/em? is supplied
to unit area and with a spot area of S=0.283 cm? the total radiation energy is ES=80 J. The channel at this
instant of time is quite long and narrow with a slightly changing (both in time and in length) angle of inclination
of its walls in relation to the axis.

We note that the ratio the channel length to its radius of 2:1 is maintained for a long time after the laser
is switched off — right up to instants of about 3 to 4 usec, Further calculation was terminated, as the shock
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wave ceases to be strong (the pressure in it becomes equal to 15-20 atm approximately). Figure 2 represents
the pressure distribution along the axis of the channel at different instants, It can be seen that the pressure .
in the vicinity of the solid surface from which the detonation wave is moving is considerably lower than the
pressure at the shock front, and after the instant of switching~off the radiation source a sharp reduction of the
amplitude of the front begins. Figure 3 shows the temperature distribution, The temperature drop along the
axis of the channel is small right up to the instant of switching-off the source, when very cold layers appear
in the vicinity of the front of the rapidly attenuating shock wave,

The small increase of temperature and pressure in the vicinity of the obstacle from which the detonation
wave is moving is associated with retardation of the jet of gas, flowing as from a nozzle from the shock front.
This is clearly seen in Fig. 4, where the velocity distribution along the axis of the channel is shown,

Figures 2 to 4 do not show the narrow zone between the shock front and the Jouguet plane. In this case,
the parameters at the shock front are as follows: pressure pg=1710 bars, temperature Tg=20,600°K, and
the compression Qg =11.1, ’

§2, Intheversionconsidered, the magnitudes of the radiation mean free .paths in the Jouguet plane were
small in comparison with the radius of the channel. During the reduction of the radiation flux density to ap-
proximately 80 MW/ cm?, when the temperature at the shock front amounts to approximately 1 eV (in the Jou~
guet plane it is approximately 2 eV), the magnitudes of the mean free paths of the radiation from a neodymium
laser increase correspondingly up to approximately 2 mm and the detonation collapses. With a reduction of the
air density for a fixed flux density, the wave velocities and the temperature increase, which leadsto a reduc-
tion of the detonation limits,

At 3 density equal to 1/10 of normal, this same magnitude of the mean free path occurs only at 13 MW/
cm?, With a reduction of the air density, the minimum radiation mean free path is increased and, finally, a
situation occurs when the finiteness of the energy release zone must be taken into account for any flux density
and a luminous detonation in the usual sense generally is not possible. However, cycles becomes possible
which are similar to luminous detonation with the partial absorption of the energy of the incident radiation.

Let us obtain the relations for determining the parameters of the gas behind the fronts of a luminous
detonation, taking into account the variability of the adiabatic index y =v (e, o), since in {1-4] they were derived
only for the case of y =const. We shall distinguish the integral adiabatic exponent occurring in the equation of
state (1.5) and the differential adiabatic exponent k(e, p) which occurs in the determination of the velocity of
sound c,

¢ = kplp, k =y + 1y —1) - dy/dinp|. + 0y/dinels. (2.1)

We shall mark all the parameters ahead of the detonation wave with the subscript 4, at the shock front
by the subscript s, and in the Jouguet plane by the subscript j. We shall assume the detonation wave to be
strong, and therefore we shall put u,=pg=p,;=0. We shall use the conventional laws of conservation of mass,
momentum, and energy -

Mv; + u; = My, + u, = Mv,, (2.2)
— M{e;+u}/2) + pjuj+ a5 = — M (e, + ul/2) + Pous + &5 = s
where q is the radiation flux density; M is the mass flow through unit area of the front. Neglecting radiation
absorption ahead of the shock front (in the "heated-up" zone), i.e., assuming qg =qq, We add to Eq. (2.2) the
Jouguet condition ,
M = pa.D = pjc.‘i’
where D is the detonation velocity; c: is determined by Eq. (2.1) when p=p4 and e =ej. Using the equation of
state (1.5), we obtain the following relations for determining the parameters in the Jouguet plane:
G = Qo — 5= — [paD*(2k; + 1 — ) VI2k; + 1)*y; — 1)
e; = k;D?/[(k; + 1)%(y; — DI u; = D(k; + 1);
8; = pilpa= (k; + 1)k p; = pD*/(k; + 1),
where 6; is the compression of the gas in the Jouguet plane; qg is the effective radiation flux density, corre-

sponding tothe energy absorbed in the front. In the case of total radiation absorption, i.e., when g; =0, the quan-
tity qe coincides with q, the radiation flux density incident on the front. We note that the sign of D and M is
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contrary to the sign of qo and q, — the detonation wave is moving toward the radiation. The parameters at the
shock front are determined in the usual way:

e =ul/2 uy=12/(y,+ ID;
es= ps'/pa = (Ys + 1)/(Vo - 1)’ P = 2pal)2/(V3 -+ 1)-

Here 0 g is the compression of the gas at the shock front. The quantities Yj kj and kg, vg depend on e, A
and eg, pg, respectively. Therefore, the calculation of the algebraic systems is carried out by the method
of iterations.

The results of the calculations of the detonation wave parameters for a density equal to 0,0316 of the
normal are given in Table 1. Here ng and n; are the linear absorption coefficients in the plane of the front
and in the Jouguet plane for an energy of the quanta € =1.16 eV (neodymium laser).

Analyzing the data given in the table, we can satisfy ourselves that at low radiation flux densities detona-
tion is impossible even at high beam radii, and this is associated with the high transmittance of the air behind
the shock front. In the region of low temperatures, the quantity n depends sharply on T, and ng << i Con~
sequently, behind the shock front there should exist an extended zone (with thickness of order I g= ns‘i, be~
hind which should be an abruptly heated front lj = nj"‘). If ngR<1, then the lateral relief behind the shock front
leads to cooling of the gas and to a considerable reduction of 7, i.e., heating-up and the onset of strong absorp-
tion become impossible. A different situation occurs in the region of high temperatures. This is associated
with the fact that with the completion of the single and initial multiple ionization, when the magnitude of the
average charge increases with temperature, the absorption coefficient also increases with temperature but to
a lesser degree. The density at the shock front is significantly higher than in the Jouguet plane (the compres-
sion 6 =13.7 and 10.8, while 67=1.83 and 1,78 at the beginning and end of the table). Because of this, 54 is
markedly greater than 7n:, and, consequently, the energy release zone is extended markedly according to the
distance from the front; % e criterion of the effect of lateral spread becomes not ngR but njR. It follows from
the table that for R=0.3 cm when qg=150 MW/cm?, for an %3 to 5, cycles should be achieved which are close
to a normal luminous detonation; in the region qeé30-70 MW/ ¢cm?, when n:R=1 to 2, cycles of incomplete ab-
sorption may be achieved, with a marked deviationfrom a full detonation.
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We shall derive the results of the calculations by the quasi-one-dimensional procedure described ahove
for the case q,=100 MW/cm? and R=3 mm for an air density P, =0.316 of the normal density.

After a time of 2.6 usec in this variation, the same energy is supplied as in the previous case, Figure
5 shows the shape of the channel for two instants: 1.2 and 2.4 psec. It can be seen that a long and narrow
channel is formed also, and the velocity of the shock front is found to be almost constant (starting from an
instant of time of about 0.5 usec) and equal to approximately 17-18 km/ seé, which is considerably lower than
it would be in a complete absorption cycle (27 km/sec, see Table 1), The quasisteadiness of motion of the
plug of compressed gas immediately behind the front is explained by the origination of a sonic section (the
dashes in Fig. 5), which does not transmit a perturbation to the front. The optical thickness of the plug re-
mains constant, which ensures a constant value of the energy absorbed in the plug and expended on maintain-
ing the motion of the front., The plane, where the Jouguet condition is satisfied, lies at a distance of approx-
mately 0.lem from the shock front,i.e., the thickness of the compressed layer absorbing the radiation is
small in comparison with the radius R and in comparison with the distance traveled by the shock wave, We
note that in this narrow region there ocurreda reasonable number (about 30) of calculated points, which pro-
vided sufficient accuracy for determining the parameters in this zone and the velocity of propagation of the
wave D,

Figure 6 gives the distribution of the parameters in the vicinity of the shock front: the pressure p,
bar; the ratio of the flux F to the magnitude of the incident flux F; the temperature T, eV, at a distance of x,
mm. It can be seen that in the section before the Jouguet plane, marked by a dashed line, approximately 50 %
of the radiation energy was absorbed. However, the parameters at the front and in the Jouguet plane are found
to be lower than for g, =50 MW/cm?, This is due, obviously, to the fact that although the layer between the
front and the Jouguet plane is quite narrow, the lateral expansion of the channel nevertheless is affected slightly.

We note that in the versions with weaker radiation absorption in the compressed gas near the front it is
necessary to take account of the effects due to the penetration of the radiation which has remained unabsorbed
up to the obstacle and the formation of a vapor jet flowing in the channel.

In conclusion, we note that it would be interesting to investigate the propagation of luminous detonation
waves in an incomplete absorption cycle.
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ESTIMATES OF THE NORMAL VELOCITIES
OF PROPAGATION OF LAMINAR AND VERY
SMALL-SCALED TURBULENT FLAMES

V. S. Baushev and V. N. Vilyunov UDC 536.46 : 533.6

On the most general assumptions (taking account of the Lewis—Semenov number, thermal ex~
pansion, variability of thermophysical parameters, etc.), analytical estimates are obtained for
the normal velocities of combustion of laminar and turbulent flames, In the case of an Arrhenius
dependence of the reaction velocity on the temperature, the combustion velocity is represented
by an asymptotic series with respect to the Frank-Kamenetskii dimensionless temperature; for
turbulent flames, with respect to a parameter of the relative scale of turbulence. The final re-
sults over a wide range of change of parameters are compared with a numerical calculation on

a computer of the exact equations and with the relations obtained by the method of combined
asymptotic expansions,

1. Mathematical Formulation of the Problem, Laminar Flame

When the temperature dependence of the rate of the volume heat release isdetermined bythe Arrhenius
law

@ = (p(T)ywz(T)exp(— E/RT), (1.1)

the thermal diffusion mechanism of propagation of a one-dimensional steady flame is described [1] by the sys-~
tem of equations

dp/du = vik(u)f(u)/p — w; (1.2)
(U/Lydvidu = 1 — olv — u)p, 0 <u<<t

and with the boundary conditions

u=0,p=0,v=0; (1.3)
7 u=1,p=0; (1.4)

_ [exp(— 8/(1 —ou), OLu<e
#w) { o bosesty (1.5)

The "cutoff" equation (1.5) of the heat release (e is the "cutoff" parameter) ensures the existence of an
eigenvalue w; of the problem (1.1)-(1.4), which is unique when 1 =Le < [1], The question of uniqueness when
Le <1 still does not have a solution,

The relations between the dimensionless and dimensional quantities are

u = (T4—TWT+— T_); p = —(AMA)du/dE; & = x/z., k(u)= (Mhr)plpr)alz
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